Abstract

In recent years, the development of intelligent reflecting surface (IRS) in wireless communications has enabled control of radio waves to reduce the detrimental impacts of natural wireless propagation. These can achieve significant spectrum and energy efficiency in wireless networks. Non-orthogonal multiple access (NOMA) technology, on the other hand, is predicted to improve the spectrum efficiency of fifth-generation and later wireless networks. Motivated by this reality, we consider the IRS-based NOMA network in the downlink and uplink scenario with a pernicious eavesdropper. Moreover, we investigated the physical layer security (PLS) of the proposed system by invoking the connection outage probability (COP), secrecy outage probability (SOP), and average secrecy rate (ASR) with analytical derivations. The simulation results reveal that (i) it is carried out to validate the analytical formulas, (ii) the number of meta-surfaces in IRS, transmit power at the base station, and power allocation parameters all play an essential role in improving the system performance, and (iii) it demonstrates the superiority of NOMA to the traditional orthogonal multiple access (OMA).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call