Abstract
We propose the new technique of physical-layer cryptography based on using a massive MIMO channel as a key between the sender and desired receiver, which need not be secret. The goal is for low-complexity encoding and decoding by the desired transmitter-receiver pair, whereas decoding by an eavesdropper is hard in terms of prohibitive complexity. The decoding complexity is analyzed by mapping the massive MIMO system to a lattice. We show that the eavesdropper's decoder for the MIMO system with M-PAM modulation is equivalent to solving standard lattice problems that are conjectured to be of exponential complexity for both classical and quantum computers. Hence, under the widely-held conjecture that standard lattice problems are hard to solve in the worst-case, the proposed encryption scheme has a more robust notion of security than that of the most common encryption methods used today such as RSA and Diffie-Hellman. Additionally, we show that this scheme could be used to securely communicate without a pre-shared secret and little computational overhead. Thus, by exploiting the physical layer properties of the radio channel, the massive MIMO system provides for low-complexity encryption commensurate with the most sophisticated forms of application-layer encryption that are currently known.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.