Abstract

Next-generation systems aim to increase both the speed and responsiveness of wireless communications while supporting compelling applications such as edge-cloud computing, remote health, vehicle-to-infrastructure communications, etc. As these applications are expected to carry confidential personal data, ensuring user privacy becomes a critical issue. In contrast to traditional security and privacy designs that aim to prevent confidential information from being eavesdropped upon by adversaries, or learned by unauthorized parties, in this article we consider designs that mask the user's identity during communication, resulting in anonymous communications. In particular, we examine the recent interest in physical layer (PHY) anonymous solutions. This line of research departs from conventional higher layer anonymous authentication/encryption and routing protocols, and judiciously manipulates the signaling pattern of transmitted signals in order to mask the sender's PHY characteristics. We first discuss the concept of anonymity at the PHY, then illustrate a strategy that is able to unmask the sender's identity by analyzing his/her PHY information only – that is, signalling patterns and the inherent fading characteristics. Subsequently, we review the emerging area of anonymous precoding to preserve the sender's anonymity while ensuring high receiver-side signal-to-interference-plus-noise ratio for communication. This family of anonymous precoding designs represents a new approach to providing anonymity at the PHY, introducing a new dimension for privacy-preserving techniques.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.