Abstract

Mineral licks, sites where animals go to consume soil, are key resources for herbivorous birds and mammals in the Amazon, providing supplemental dietary nutrients and toxin adsorption functions. However, because they are often difficult to find, the properties of mineral licks are poorly understood. Here, we undertake the largest survey of Amazonian mineral licks to date to determine the landscape, physical, and chemical properties of these critical sites. We used a generalized linear mixed-effects modeling framework to assess how soil samples from 83 mineral licks differ from nearby control soils in a series of physical and chemical characteristics, then used Jaccard's index of similarity and a principal component analysis (PCA) to determine how those samples differed among themselves. We found that mineral licks were generally located in specific ranges of landscape variables. Soils from mineral licks had elevated concentrations of almost all minerals measured. There was very little similarity between consumed and control samples, and within each sample type. We suggest that these mineral licks have the potential to provide multiple services to visiting species, demonstrating their ecological importance. The high levels of dissimilarity between samples indicate that a large sample of mineral licks is needed to draw conclusions in studies pertaining to geophagy. We emphasize that studying mammal and bird visitation at these sites could provide critical conservation and physiological information on cryptic and understudied species of Amazonian herbivores.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.