Abstract

This study aims to provide physical interpretations of electrochemical impedance spectroscopy (EIS) measurements for redox active electrodes in a three-electrode configuration. To do so, a physicochemical transport model was used accounting for (i) reversible redox reactions at the electrode/electrolyte interface, (ii) charge transport in the electrode, (iii) ion intercalation into the pseudocapacitive electrode, (iv) electric double layer formation, and (v) ion electrodiffusion in binary and symmetric electrolytes. Typical Nyquist plots generated by EIS of redox active electrodes were reproduced numerically for a wide range of electrode electrical conductivity, electrolyte thickness, redox reaction rate constant, and bias potential. The electrode, bulk electrolyte, charge transfer, and mass transfer resistances could be unequivocally identified from the Nyquist plots. The electrode and bulk electrolyte resistances were independent of the bias potential, while the sum of the charge and mass transfer resis...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call