Abstract

As a defined model of outer membranes of gram negative bacteria, we investigated the interaction of monolayers of lipopolysacchrides from Salmonella enterica rough strains R90 (LPS Ra) with natural and synthetic peptides. The fine structures perpendicular to the membrane plane and the ion distribution near the interface were determined by specular x-ray reflectivity (XRR) and grazing-incidence x-ray fluorescence (GIXF) in the presence and absence of divalent cations. The unique combination of XRR and GIXF allows for the quantitative identification of different modes of interactions in a high spatial resolution, which cannot be assessed by other experimental methods. Natural fish protamine disrupts the stratified membrane structures in the absence of Ca(2+) ions, while staying away from the membrane surface in the presence of Ca(2+) ions. In contrast, synthetic antisepsis peptide Pep 19-2.5 weakly adsorbs to the membrane and stays near the uncharged sugar units even in the absence of Ca(2+). In the presence of Ca(2+), Pep 19-2.5 can reach the negatively charged inner core without destroying the barrier capability against ions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.