Abstract

Memory resistor, or memristor, has been realized as a discrete electronic device and has a perspective application in the field of cryptography. The physical implementation of the memristor in chaotic circuits has been scarcely explored. In this paper, a memristor is fabricated by spin-coating a cobalt ferrite precursor on a processed silicon and is then electro-sputtered with silver to act as the anode with the base silicon as the cathode. This fabrication process has a scalability potential in conjunction with integrated circuit fabrication techniques and complementary metal oxide semiconductor (CMOS) technologies. The fabricated cobalt ferrite memristor has shown a ratio between the on and off resistance of >1000 and has been implemented in a chaotic Chua's circuit, making it one of few physical implementations of a physical memristor in a physical circuit. The analysis and characterization of this circuit using bifurcation diagrams and Lyapunov exponent prove the chaotic behavior of a real Chua's circuit. This chaotic behavior can be useful in chaotic cryptography as nonperiodic oscillations can be leveraged to make sensitive information more difficult to interpret by bad actors.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call