Abstract

The global objective of this work was to manufacture resistant and durable (water resistant) earth renders with good thermal insulation. For this purpose, a medium plastic clayey soil from Kôdéni (Burkina Faso), constituted by kaolinite (62 wt.%), quartz (31 wt.%), and goethite (2 wt.%), was mixed with dolomitic lime (up to 6 wt.%) to manufacture earth renders. The mineralogical, microstructural, and chemical characteristics of dolomitic lime, as well as the physical (linear shrinkage, apparent density, and accessible porosity), hydric (water absorption test by capillarity and spray test), thermal (thermal conductivity), and mechanical (abrasion resistance, flexural, and compressive strengths) properties of the earth renders were evaluated. From these studies, it appears that the addition of dolomitic lime induces the formation of calcium silicate (CSH) and magnesium silicate (MSH) hydrates. These CSH and MSH are mainly formed from the pozzolanic reaction between finely ground quartz and the weak silica of kaolinite in basic media. These formed hydrates improve the physical, hydric, thermal, and mechanical properties of earth renders. This improvement is due to the fact that the formed CSH and MSH stick to the isolated particles of the soil, making them more compact. In view of the good mechanical strength and water resistance, as well as the low thermal conductivity, the elaborated earth renders are suitable for habitats with dry climates, such as the Sahel.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.