Abstract

We present a new type of generalization of the Rényi entropy that follows naturally from its representation as a thermodynamic quantity. We apply it to the case of [Formula: see text]-dimensional conformal field theories (CFTs) reduced on a region bounded by a sphere. It is known how to compute their Rényi entropy as an integral of the thermal entropy of hyperbolic black holes in [Formula: see text]-dimensional anti-de Sitter spacetime. We show how this integral fits into the framework of extended gravitational thermodynamics, and then point out the natural generalization of the Rényi entropy that suggests itself in that light. In the field theory terms, the new generalization employs aspects of the physics of Renormalization Group (RG) flow to define a refined version of the reduced vacuum density matrix. For [Formula: see text], it can be derived directly in terms of twist operators in field theory. The framework presented here may have applications beyond this context, perhaps in studies of both quantum and classical information theoretic properties of a variety of systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call