Abstract

Insulin induces vasodilation via stimulation of nitric oxide (NO) synthesis. This action of insulin exhibits considerable interindividual variation. We determined whether the response of blood flow to endothelium-dependent vasoactive agents correlates with that to insulin or whether other factors, such as physical fitness, limb muscularity, or vasodilatory capacity, better explain variations in insulin-stimulated blood flow. Direct measurements of the forearm blood flow response to three 2-h sequential doses of insulin (1, 2, and 5 mU/ kg.min), endothelium-dependent (acetylcholine and NG-monomethyl-L-arginine) and endothelium-independent (sodium nitroprusside) vasoactive agents, and ischemia (reactive hyperemic forearm blood flow) were performed in 22 normal subjects (age, 24 +/- 1 yr; body mass index, 22.2 +/- 0.6 kg/m2; maximal aerobic power, 40 +/- 2 mL/kg.min). The highest insulin dose increased blood flow by 111 +/- 17%. The fraction of basal blood flow inhibited by NG-monomethyl-L-arginine (NO synthesis-dependent flow) varied from 6-47%. Maximal aerobic power (r = 0.52; P < 0.02), the percentage of forearm muscle (r = 0.50; P < 0.02), and the NO synthesis-dependent flow (r = 0.42; P < 0.05), but not reactive hyperemic, acetylcholine-stimulated, or sodium nitroprusside-stimulated flow, were significantly correlated with insulin-stimulated (5 mU/kg.min) blood flow. In multiple linear regression analysis, 52% of the variation (multiple R = 0.72; P < 0.001) in insulin-stimulated blood flow was explained by NO synthesis-dependent flow (P < 0.005) and the percentage of forearm muscle (P < 0.005). We conclude that endothelial function (NO synthesis-dependent basal blood flow) and forearm muscularity are independent determinants of insulin-stimulated blood flow.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call