Abstract

Abstract Scanning electron microscope (SEM) and high resolution transmission electron microscope analysis combined with focused ion beam have been used to locate the physical defect. Visualizing the defect by these techniques was found to be difficult. This paper introduces a novel physical failure analysis technique using 3D rotation STEM imaging. It describes the electrical method of analyzing the cause of failure. Trying to determine with 2D imaging if the defect was a crystalline or not was problematical. To resolve the issue, a pillar type of specimen was made by utilizing a 3D rotation holder and observed with the sample from different directions. Results confirmed that the generation of dislocations can occur according to the variation of the stress transferred to the bulk Si. The variation was due to stress intensity and pattern isolation as a function of the film volume of spin on dielectric material and shallow trench isolation size.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.