Abstract

Nitrogenous run-off from farmed pastures contributes to the eutrophication of Lake Ellesmere, a large shallow lagoon/lake on the east coast of New Zealand. Tributaries periodically deliver high loads of nitrate to the lake which likely affect microbial communities therein. We hypothesized that a nutrient gradient would form from the potential sources (tributaries) creating a disturbance resulting in changes in microbial community structure. To test this we first determined the existence of such a gradient but found only a weak nitrogen (TN) and phosphorous gradient (DRP). Changes in microbial communities were determined by measuring functional potential (quantification of nitrogen cycling genes via nifH, nirS, nosZI, and nosZII using qPCR), potential activity (via denitrification enzyme activity), as well as using changes in total community (via 16S rRNA gene amplicon sequencing). Our results demonstrated that changes in microbial communities at a phylogenetic (relative abundance) and functional level (proportion of the microbial community carrying nifH and nosZI genes) were most strongly associated with physical gradients (e.g., lake depth, sediment grain size, sediment porosity) and not nutrient concentrations. Low nitrate influx at the time of sampling is proposed as a factor contributing to the observed patterns.

Highlights

  • Conventional agricultural practices result in large inputs of nutrients into soils either to promote crop and livestock growth or as waste products

  • Lake salinity was used as a predictor for freshwater inflow, and correlated to nutrient concentrations within the lake waters to determine the influence of freshwater inflow on water column nutrient status

  • Other nutrients did not display strong spatial patterns associated with freshwater inflow, linear regressions show that Total Nitrogen concentration (TN), dissolved reactive phosphorus (DRP), and possibly total phosphorus (TP) decreased with distance from the mouths of the Selwyn and L2 rivers (Figure 2)

Read more

Summary

Introduction

Conventional agricultural practices result in large inputs of nutrients into soils either to promote crop and livestock growth or as waste products. Not all of these nutrients can be consumed locally, inevitably leaving excess which affects local and distant environments (Tilman, 1999; Di and Cameron, 2002). Through runoff or seepage to groundwater, nutrients can reach aquatic ecosystems ranging from freshwater to salt water (Tilman, 1999; Di and Cameron, 2002; Camargo and Alonso, 2006). Nitrogen wastes are of concern as they can increase greenhouse gas emissions through N2O production (Canfield et al, 2010), and can lead to eutrophication of aquatic environments likely imposing a selective pressure than can disturb intrinsic community assembly processes

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.