Abstract

The metabolic cost, energy output and efficiency (i.e. the ratio of energy output to metabolic cost) of sound production were compared among male grey treefrogs (Hyla versicolor) as a function of body size and temperature. The effects of call length (in notes per call) and dominant frequency (in kHz) were also considered. Cost, determined from the amount of oxygen consumed, averaged 12.1 mJ per note and was dependent only upon body mass. Acoustic energy per note, determined from oscillograms of recorded calls, averaged 0.34 mJ and was dependent only upon temperature. Conventional theory suggests that the efficiency of sound production should be a function of the ratio of the linear size of the radiating structures to the wavelength of the sound generated (i.e. efficiency is assumed to be a function of the product of mass(0.33) and frequency), but efficiency in H. versicolor was found to be a function of the product of temperature(2.1) and mass(-1.08). Adjusting for temperature and body mass, the efficiency of sound production in H. versicolor (average 2.4 %) is greater than the efficiency of other frog species for which data are available. Temperature may affect acoustic energy output because trunk muscle contraction speed increases with temperature, which increases the velocity of airflow across the vocal cords.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.