Abstract

Obesity is a predictive factor for the development of nonalcoholic steatohepatitis (NASH). Although some of the mechanisms associated with NASH development are still elusive, its pathogenesis relies on a complex broad spectrum of (interconnected) metabolic-based disorders. We analyzed the effects of voluntary physical activity (VPA) and endurance training (ET), as preventive and therapeutic nonpharmacological strategies, respectively, against hepatic endoplasmic reticulum (ER) stress, ER-related proapoptotic signaling, and oxidative stress in an animal model of high-fat diet (HFD)-induced NASH. Adult male Sprague-Dawley rats were divided into standard control liquid diet (SCLD) or HFD groups, with sedentary, VPA, and ET subgroups in both (sedentary animals with access to SCLD[SS], voluntarily physically active animals with access to SCLD[SV], and endurance-trained animals with access to SCLD[ST] in the former and sedentary animals with access to liquid HFD[HS], voluntarily physically active animals with access to liquid HFD[HV], and endurance-trained animals with access to liquid HFD[HT] in the latter, respectively). Hepatic ER stress and ER-related proapoptotic signaling were evaluated by Western blot and reverse transcriptase-polymerase chain reaction; redox status was evaluated through quantification of lipid peroxidation, protein carbonyls groups, and glutathione levels as well as antioxidant enzymes activity. In SCLD-treated animals, VPA significantly decreased eukaryotic initiation factor-2 alpha (eIF2α). In HFD-treated animals, VPA significantly decreased eIF2α and phospho-inositol requiring enzyme-1 alpha(IRE1α) but ET significantly decreased eIF2α and significantly increased both spliced X-box binding protein 1 (sXBP1) and unspliced X-box binding protein 1; a significant increase of phosphorylated-eIF2α(p-eIF2α) to eIF2α ratio occurred in ET versus VPA. HS compared to SS disclosed a significant increase of total and reduced glutathione, HV compared to SV a significant increase of oxidized glutathione, HT compared to ST a significant increase of p-eIF2α to eIF2α ratio and sXBP1. Physical exercise counteracts NASH-related ER stress and its associated deleterious consequences through a positive and dynamical modulation of the hepatic IRE1α-X-box binding protein 1 pathway.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.