Abstract

Introduction: Lipopolysaccharide (LPS) is a systemic response-triggering endotoxin, which has the kidney as one of its first targets, thus causing acute injuries to this organ. Physical exercise is capable of promoting physiological alterations and modulating inflammatory responses in the infectious process through multiple parameters, including the toll-like receptor (TLR)-4 pathway, which is the main LPS signaling in sepsis. Additionally, previous studies have shown that physical exercise can be both a protector factor and an aggravating factor for some kidney diseases. This study aims at analyzing whether physical exercise before the induction of LPS endotoxemia can protect kidneys from acute kidney injury.Methods: C57BL/6J male mice, 12 weeks old, were distributed into four groups: (1) sedentary (control, N = 7); (2) sedentary + LPS (N = 7); (3) trained (N = 7); and (4) trained + LPS (N = 7). In the training groups, the animals exercised 5×/week in a treadmill, 60 min/day, for 4 weeks (60% of max. velocity). Sepsis was induced in the training group by the application of a single dose of LPS (5 mg/kg i.p.). Sedentary animals received LPS on the same day, and the non-LPS groups received a saline solution instead. All animals were euthanized 24 h after the administration of LPS or saline.Results: The groups receiving LPS presented a significant increase in serum urea (p < 0.0001) and creatinine (p < 0.001) concentration and renal gene expression of inflammatory markers, such as tumor necrosis factor alpha and interleukin-6, as well as TLRs. In addition, LPS promoted a decrease in reduced glutathione. Compared to the sedentary + LPS group, trained + LPS showed overexpression of a gene related to kidney injury (NGAL, p < 0.01) and the protein levels of LPS receptor TLR-4 (p < 0.01). Trained + LPS animals showed an expansion of the tubulointerstitial space in the kidney (p < 0.05) and a decrease in the gene expression of hepatic AOAH (p < 0.01), an enzyme involved in LPS clearance.Conclusion: In contrast to our hypothesis, training was unable to mitigate the renal inflammatory response caused by LPS. On the contrary, it seems to enhance injury by accentuating endotoxin-induced TLR-4 signaling. This effect could be partly due to the modulation of a hepatic enzyme that detoxifies LPS.

Highlights

  • Lipopolysaccharide (LPS) is a systemic response-triggering endotoxin, which has the kidney as one of its first targets, causing acute injuries to this organ

  • In order to analyze if our protocol was able to promote alterations in the kidney tissue and considering that several physiological adaptations of physical exercise are mediated by peroxisome proliferator-activated receptor-gamma coactivator 1α (PGC1-α; Handschin and Spiegelman, 2008), we checked the mRNA of this cofactor and found that our training protocol increased PGC1-α levels (Supplementary Figure 1) in the kidney, suggesting a positive effect of training in this tissue

  • In order to analyze whether LPS modulates kidney injury-related gene expression and if the training protocol could interfere in these responses, we checked neutrophil gelatinase-associated lipocalin (NGAL) and kidney injury molecule 1 (Kim-1), and both gene expressions were higher when animals received LPS (Figures 3C,D)

Read more

Summary

Introduction

Lipopolysaccharide (LPS) is a systemic response-triggering endotoxin, which has the kidney as one of its first targets, causing acute injuries to this organ. Whereas the kidney is one of the first organs affected in cases of systemic involvement, acute kidney injury (AKI) is frequently a complication of sepsis (Zarjou and Agarwal, 2011; Abulizi et al, 2017). The pathophysiology of AKI in sepsis is multifactorial and includes, among other signs, hemodynamic changes, endothelial dysfunction, and inflammatory cell infiltration. It features acute tubular necrosis due to hypovolemia and consequent low blood perfusion in the tissue. It is associated with severe morbidity and characterized by decreased glomerular filtration function and increased serum urea and creatinine levels (Wan et al, 2008; Zarjou and Agarwal, 2011; Abulizi et al, 2017)

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call