Abstract
Physical exercise enhances a wide range of cognitive functions in humans. Running-induced cognitive enhancement has also been demonstrated in rodents but with a strong emphasis on tasks that require the hippocampus. Additionally, studies designed to identify mechanisms that underlie cognitive enhancement with physical exercise have focused on running-induced changes in neurons with little attention paid to such changes in astrocytes. To further our understanding of how the brain changes with physical exercise, we investigated whether running alters performance on cognitive tasks that require the prefrontal cortex and whether any such changes are associated with astrocytic, as well as neuronal, plasticity. We found that running enhances performance on cognitive tasks known to rely on the prefrontal cortex. By contrast, we found no such improvement on a cognitive task known to rely on the perirhinal cortex. Moreover, we found that running enhances synaptic, dendritic and astrocytic measures in several brain regions involved in cognition but that changes in the latter measures were more specific to brain regions associated with cognitive improvements. These findings suggest that physical exercise induces widespread plasticity in both neuronal and nonneuronal elements and that both types of changes may be involved in running-induced cognitive enhancement.
Highlights
Physical exercise is known to enhance cognition in humans across multiple age groups ranging from school age children to the elderly, as well as in healthy individuals and patient populations [1,2]
Our results indicate that a moderate duration of running (12 days) enhances performance on cognitive tasks that require the medial prefrontal cortex, such as object in place and the attentional set-shifting task
When taken together with previous literature showing that performance on cognitive tasks requiring the hippocampus is improved by running [2,7,16,17], our findings suggest that physical exercise has a widespread positive impact on cognition in rodents, as it does in humans [1]
Summary
Physical exercise is known to enhance cognition in humans across multiple age groups ranging from school age children to the elderly, as well as in healthy individuals and patient populations [1,2]. The types of cognitive tasks known to be improved by physical exercise in humans are varied, including tests of vocabulary, working memory and executive function [3,4,5,6]. Consistent with the wide range of improved cognitive function, physical exercise has widespread effects on human brain structure, increasing volume in many brain regions [1]. Understanding the cellular processes that underlie physical exercise-induced improvements in brain function will help us to understand cognition in general, as well as to identify mechanisms that might be utilized for therapeutic improvement of learning and memory. PLOS ONE | DOI:10.1371/journal.pone.0124859 May 4, 2015
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.