Abstract
A brief training in a pool maze, with or without cognitive tasks, modifies the synaptogenesis and maturation of newborn neurons in adult rat dentate gyrus. These types of trainings have many aspects, including physical activity and exploration. Therefore, to evaluate whether physical exercise and environment exploration are able to affect synapse formation and the maturation of adult-generated neurons, GFP-retrovirus infusion was performed on rats which, on the fourth day after injection, were housed under running conditions or allowed to explore an enriched environment briefly in the absence of exercise for the following three days. Afterward, at the end of the trainings, electrophysiological and morphological studies were conducted. Considering that neurotrophic factors increase after exercise or environment exploration, hippocampal BDNF levels and TrkB receptor activation were evaluated. In this study, we show that both spontaneous physical activity and enriched environment exploration induced synaptogenesis and T-type voltage-dependent Ca2+ currents in very immature neurons. Hippocampal BDNF levels and TrkB receptor activation were determined to be increasing following physical activity and exploration. A possible contribution of BDNF signaling in mediating the observed effects was supported by the use of 7-8-dihydroxyflavone, a selective TrkB agonist, and of ANA-12, an inhibitor of TrkB receptors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.