Abstract
We investigate the buildup of the halo profile out to large scale in a cosmological simulation, focusing on the roles played by the recently proposed depletion radii. We explicitly show that halo growth is accompanied by the depletion of the environment, with the inner depletion radius demarcating the two. This evolution process is also observed via the formation of a trough in the bias profile, with the two depletion radii identifying key scales in the evolution. The ratio between the inner depletion radius and the virial radius is approximately a constant factor of 2 across redshifts and halo masses. The ratio between their enclosed densities is also close to a constant of 0.18. These simple scaling relations reflect the largely universal scaled mass profile on these scales, which only evolves weakly with redshift. The overall picture of the boundary evolution can be broadly divided into three stages according to the maturity of the depletion process, with cluster halos lagging behind low-mass ones in the evolution. We also show that the traditional slow and fast accretion dichotomy of halo growth can be identified as accelerated and decelerated depletion phases, respectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.