Abstract

This paper presents an experimental study focusing on the mechanisms taking place in a granular platform supported by piles in soft soil under vertical cyclic loading. An original three-dimensional laboratory model was developed, with a scale factor of 1/10 on the length. The model contains 20 rigid piles, and the compressible soil is explicitly simulated by a soft material. The case of a thin granular load transfer platform overlaid by a rigid slab is studied. Tests were performed under monotonic or cyclic loading applied on the surface using a pressurized membrane. The analysis is based on a force and displacement sensor instrumentation and application of a Digital Image Correlation technique. The evaluation of the load transfer onto the piles and the settlements in the platform are some of the main points under the scope of this study. The effect of the cyclic loading and the sequence of loading on the structure’s response are examined by a comparative study between the series of cyclic and monotonic tests. Settlement accumulation and increase in the load transmitted to the piles were observed during the cycles. The image analysis gives access to the displacement field within the granular platform, and its evolution during the cycles could be analysed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call