Abstract

An effective technique, which is based only on geometrical and physical data, is presented for the analysis of high-frequency FETs. The intrinsic part of this electron device is described by a quasi-two-dimensional hydrodynamic transport model, coupled to a numerical electromagnetic field time domain solver in three dimensions that analyzes the passive part of the FET. Such an analysis is entirely performed in the time domain, thus allowing linear and nonlinear operations. The obtained data give insights to some parameters affecting the signal distribution through the entire device structure; a comprehensive discussion of these is given for a test device. In order to prove the validity of the approach, the bias-dependent small-signal analysis is compared with the corresponding measurements up to 50 GHz for two 0.3-/spl mu/m gate-length AlGaAs-InGaAs-GaAs pseudomorphic high electron-mobility transistors, each having two gate fingers of 25-/spl mu/m and 100-/spl mu/m width, at bias points ranging from Idss to the pinchoff regime. The accuracy and the efficiency of the approach make it suitable for device optimization.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.