Abstract

Wound-healing of drug-resistant bacterial infections has always been a clinical challenge. The design and development of effective and economically safe wound dressings with antimicrobial activity and healing-promoting properties is highly desirable, especially in the context of wound-infections. Herein, we designed a physical dual-network multifunctional hydrogel adhesive based on polysaccharide material for the treatment of full-thickness skin defects infected with multidrug-resistant bacteria. The hydrogel utilized ureido-pyrimidinone (UPy)-modified Bletilla striata polysaccharide (BSP) as the first physical interpenetrating network for providing some brittleness and rigidity; and then branched macromolecules formed after cross-linking Fe3+ with dopamine-conjugated di-aldehyde-hyaluronic acid as the second physical interpenetrating network for providing some flexibility and elasticity. In this system, BSP and hyaluronic acid (HA) are used as synthetic matrix materials to provide strong biocompatibility and wound-healing ability. In addition, ligand cross-linking of catechol-Fe3+ and quadrupole hydrogen-bonding cross-linking of UPy-dimer can form a highly dynamic physical dual-network structure, which imparts good rapid self-healing, injectability, shape-adaptation, NIR/pH responsiveness, high tissue-adhesion and mechanical properties of this hydrogel. Meanwhile, bioactivity experiments demonstrated that the hydrogel also possesses powerful antioxidant, hemostatic, photothermal-antibacterial and wound-healing effects. In conclusion, this functionalized hydrogel is a promising candidate for clinical treatment of full-thickness bacteria-stained wound dressing materials.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.