Abstract
The red Noctiluca scintillans (RNS) blooms often break out near Pingtan Island, in the northern Taiwan Strait from April to June. It is essential to gain insights into their formation mechanism to predict and provide early warnings for these blooms. Previous studies and observations showed that RNS blooms are the most likely to occur when winds are weak and shifting in direction. To explore this phenomenon further, we employed a high-resolution coastal model to investigate the hydrodynamics influencing RNS blooms around Pingtan Island from April to June 2022. The model results revealed that seawater exhibited weak circulation but strong stratification during RNS blooms. Residence time were examined through numerical experiments by releasing passive neutrally buoyant particles in three bays of Pingtan Island. The results showed a significantly longer residence time during RNS blooms, indicating reduced flushing capabilities within the bays, which could give RNS a stable environment to multiply and aggregate. This hydrodynamic condition provided a favorable basis for RNS blooms breakout near Pingtan Island. The shifts and weakening of the prevailing northeast wind contributed substantially to weakening the flow field around Pingtan Island and played a crucial role in creating the hydrodynamics conducive to RNS blooms. Our study offers fresh insights into the mechanisms underpinning RNS blooms formation near Pingtan Island, providing a vital framework for forecasting RNS blooms in this region.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.