Abstract
"Ying-Guang 1" is a multi-bank pulsed power device for investigating the formation, confinement and instability of the high temperature and high density field-reversed configuration (FRC) plasma injector for the magnetized target fusion (MTF). This paper described the physical design of the "Ying-Guang 1" device which will be constructed in 2013 at the Institute of Fluid Physics, CAEP. Theoretical results show that the peak reversed current and magnetic field of this device are 1.5 MA and 4 T respectively with the rise time of 3 μ s. Based on the semi-empirical formula developed by Tuszewski the magnetized plasma of equilibrium density 6.6×1016 cm-3 and temperature (Ti+Te) ~ 300 eV could be achieved on the "Ying-Guang 1" device when the initially filled D2 gas pressure is about 50 mTorr, and the length of the FRC separatrix is 17 cm with a radius of 2 cm. The average ratio of the thermal pressure to magnetic pressure β is about 0.95, and the magnetic field embedded in plasma is 0.5 T. From the adiabatic compression scaling laws and the corresponding ignition conditions, the formated FRC plasma target of the "Ying-Guang 1" device approaches the necessity of the MTF if the radius compression ratio of the solid metal liner were set to 10.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.