Abstract

Optimization of the structural skew alone, through balanced H or grid clock design and load balancing, is not adequate. Process, voltage, and temperature (PVT) variations dominate in most cases the total clock skew.While active deskew circuits [1–8] (also thoroughly described in Chaps.2 and 7, and the use of asynchronous FIFOs in clock domain crossings [9] can reduce the effect of skew, we still need to reduce the variation in the clock network to minimize the overall complexity and design effort. Higher skew would require larger number and extended range in the deskewing circuits. Increased clock skew would mean larger hold time violations that would require additional delay elements inserted in the critical path. This will increase area and power. This chapter focuses on physical design considerations to help minimize overall skew and to avoid overdesign. At first, we provide an overview of various skew components and explain their dependency on the process, voltage, and temperature variations. We describe the main sources of transistor variation including lithographic, layout, proximity, and strain related effects. Similarly, interconnects suffer from lithographic, process, and pattern density effects that add to the variability. We provide recommendations on how to optimize the layout to minimize both the transistor and interconnect variations, and provide answers to fundamental clock designer questions: How should I calculate the total process variation along a chain of clock buffers? Should I just add the variations of the individual stages or should I use a Root Mean Square approach? (It turns out none of the above approaches is correct if used in isolation.) What is the best approach in dealing with the voltage variation? Do all clock buffers see the same voltage variation? How does the temperature variation affect clock skew, and are there ways to compensate for this? What is the impact of inductance? Good understanding of the behavior of correlated vs. noncorrelated parameters will help us define the correct methodology for the delay variation estimation using well-established statistical techniques.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call