Abstract

Ever-growing demand for artificial intelligence has motivated research on unconventional computation based on physical devices. While such computation devices mimic brain-inspired analog information processing, the learning procedures still rely on methods optimized for digital processing such as backpropagation, which is not suitable for physical implementation. Here, we present physical deep learning by extending a biologically inspired training algorithm called direct feedback alignment. Unlike the original algorithm, the proposed method is based on random projection with alternative nonlinear activation. Thus, we can train a physical neural network without knowledge about the physical system and its gradient. In addition, we can emulate the computation for this training on scalable physical hardware. We demonstrate the proof-of-concept using an optoelectronic recurrent neural network called deep reservoir computer. We confirmed the potential for accelerated computation with competitive performance on benchmarks. Our results provide practical solutions for the training and acceleration of neuromorphic computation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.