Abstract

The force on a particle with complex electric polarizability is known to be not derivable from a potential, so its curl is non-zero. This ‘curl force’ is studied in detail for motion near an anisotropic optical vortex of arbitrary strength. Fundamental questions are raised by the fact that although the curl force requires the polarizability to have a non-zero imaginary part, reflecting absorption or scattering (‘dissipation’) in the internal dipole dynamics, the particle motion that it generates is non-dissipative (volume-preserving in the position-velocity state space).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.