Abstract
Wear behaviors of a series of model cast polyurethane elastomers (CPU) under linear reciprocating sliding and fretting conditions were investigated and physically compared with their corresponding scratch behavior. It is found that the sliding wear and scratch damages of the model systems are both governed by abrasive wear mechanism, which involves tensile tear induced cracking along with material removal on the surface. The scratch resistance against tensile tear induced cracking/material removal of the model CPU systems correlates well with their abrasive wear performance, which can then be linked to their material properties, i.e., a higher tensile strength improves abrasive wear resistance. On the other hand, the fretting wear damage of the model systems is found to be dominated by adhesive-fatigue wear mechanism, and thus cannot be correlated with the scratch performance. Temperature rise measurement of the model CPU systems during wear was also performed to further understand the observed wear behaviors. The present study provides fundamental insights into understanding of complex abrasive wear behavior of polymers through their corresponding simpler scratch behavior.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.