Abstract
AbstractAquatic vegetation plays a role in engineering river channels by altering patterns of flow velocity, sediment dynamics and, consequently, development and turnover of habitats. This could potentially aid in the rehabilitation of over‐widened, straightened channels, and, less desirably, reduce channel conveyance and contribute to flooding problems. Therefore, it is important to understand the environmental conditions in which in‐stream and marginal vegetation can reach sufficient abundance for these engineering roles to have a significant impact on the physical environment.Macrophyte and environmental data from 1653 river reaches across Great Britain were collated. Specific stream power (SSP) was calculated to represent hydrological disturbance and a median bed calibre index and percentage sand and finer sediment were used to characterize substrate size, since stream energy and sediment properties are two major physical controls on aquatic vegetation. Correlation and Principal Component Analysis (PCA) revealed subtly different physical habitat ‘preferences’ between species of contrasting morphology. Correlations of additional environmental data with SSP indicated that this physical disturbance variable also reflects gradients in stress variables describing nutrient availability and latitude and so is a useful integrator of a number of important pressures on plant survival.A conceptual model was produced which indicates ranges of SSP which may determine the significance of aquatic macrophytes in channel engineering processes. This model could contribute to predicting the potential for macrophyte growth within a given reach thus indicating its capacity for self‐restoration or the likelihood of weed problems. Copyright © 2010 John Wiley & Sons, Ltd.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.