Abstract

It is demonstrated that (i) the postulate of infinite differentiability in Cartesian coordinates and (ii) the physical assumption of regularity on the axis of a cylindrical coordinate system provide significant simplifying constraints on the coefficients of Fourier expansions in cylindrical coordinates. These constraints are independent of any governing equations. The simplification can provide considerable practical benefit for the analysis (especially numerical) of actual physical problems. Of equal importance, these constraints demonstrate that if A is any arbitrary physical vector, then the only finite Fourier terms of Ar and Aθ are those with m=1 symmetry. In the Appendix, it is further shown that postulate (i) may be inferred from a more primitive assumption, namely, the arbitrariness of the location of the cylindrical axis of the coordinate system.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.