Abstract

The diameter and vertical depth of sand crab tunnels in sandy beaches are usually restricted to a few centimeters scale and several tens of centimeters, respectively. We designed a study to determine what physical factors restrict tunnel diameter and predict the maximum attainable tunnel diameter and depth. We collected field data on the size and spatial distributions of ghost crab (Ocypode spp.) burrows on two sandy beaches (Kawage Beach in Tsu, Mie Prefecture, Japan and Sakieda Beach in Ishigaki, Okinawa Prefecture, Japan), where O. ceratophthalma dominants the ghost crab fauna. We measured burrow depths and distance from shoreline in concert with water content of sandy beaches. To explain our observed distributions of crab burrows in the field, we performed experiments in a lab microcosm, comprising a horizontal tunnel through wet sand. We measured the static stability of tunnel structures in relation to water content and two strengths computed from loading force exerted on the sand overlying the tunnels. By comparing field and experimental data, we found that crabs construct their burrows in appropriately wet zones (wet enough to provide sufficient cohesion of the sand grains in tunnel walls to prevent collapse) and that tunnel diameters and depths are sufficiently small to prevent deformation and collapse of their tunnels.

Highlights

  • Mechanical properties of tunnels in soil have long been studied by civil engineers [1,2,3,4,5]

  • When we experimentally analyzed the relationship between the spatial distribution of burrows and water content of beach sand through which crab tunnels are built, we found that burrows could be constructed in sands within a relatively wide range in water content (0.017 W 0.39) (Fig 9)

  • Ghost crab burrow tunnels vary within a narrow range of diameters and depths even though the water content of the beach sands through which they burrow varies widely in space

Read more

Summary

Introduction

Mechanical properties of tunnels in soil have long been studied by civil engineers [1,2,3,4,5] The focus of such studies has been to develop safe methods for reinforcing and stabilizing tunnels to prevent them from collapsing. The collapse of voids in cohesive granular matter is aso thought to be responsible for pit structures on comet surfaces [6, 7]. Both the minimum pit size on comets and the maximum size of crab burrows on sandy beaches have been estimated by determining the void stability of a cohesive granular layer [8].

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call