Abstract

We present the concept of a theory machine, which is an atemporal computational formalism that is deployable within an arbitrary logical system. Theory machines are intended to capture computation on an arbitrary system, both physical and unphysical, including quantum computers, Blum-Shub-Smale machines, and infinite time Turing machines. We demonstrate that for finite problems, the computational power of any device characterisable by a finite first-order theory machine is equivalent to that of a Turing machine. Whereas for infinite problems, their computational power is equivalent to that of a type-2 machine. We then develop a concept of complexity for theory machines, and prove that the class of problems decidable by a finite first order theory machine with polynomial resources is equal to 𝒩𝒫 ∩ co-𝒩𝒫.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.