Abstract
In this work, we studied the anthracene oxidation by hydroxyl radicals. Hydroxyl radical was generated by reaction of 5,10,15,20-tetrakis(4-carboxyphenyl)porphyrin Fe (III) (TPPFe) with hydrogen peroxide under visible radiation at a nitrogen atmosphere. The TPPFe was synthesized by Adler Method followed by metal complexation with Fe (III) chloride hexahydrate. Hydroxyl radical was detected by fluorescence emission spectroscopy and we studied kinetic of anthracene selective oxidation by hydroxyl radicals through the differential method. The TPPFe was characterized by UV-Vis spectrophotometry, Dynamic Light Scattering (DLS) and Scanning Electron Microscopy (SEM) measurements. The results indicated that TPPFE was compound by micro-particles with a size distribution of around 2500 nm. Kinetic results showed that the apparent rate constant for the oxidation of anthracene increased exponentially on as temperature increases, furthermore, the activation energy for the Anthracene oxidation by hydroxyl radicals under visible irradiation was 51.3 kJ/mol. Finally, anthraquinone was the main byproduct generated after oxidation of anthracene by TPP-Fe under visible irradiation.
Highlights
Nowadays polycyclic aromatic hydrocarbons (PAH) originate from the incomplete combustion of fossil fuels are an important researching subject, from the environmental point of view, PAH are very important since they are involved in metabolic processes that affect human health [1,2]
Figure shows the fluorescence emission spectra of by product obtained for the reaction of hydroxyl
We studied the kinetics of the oxidation of anthracene on ferric tetracarboxyphenylporphyrin under visible irradiation
Summary
Nowadays polycyclic aromatic hydrocarbons (PAH) originate from the incomplete combustion of fossil fuels are an important researching subject, from the environmental point of view, PAH are very important since they are involved in metabolic processes that affect human health [1,2]. Goulay et al, reported the first direct measurement of the reaction rate constant of a polycyclic aromatic hydrocarbon in the gas phase in the temperature range 58–470 K [8]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.