Abstract

Hot springs of the volcanic zones are characterized for having high sulfur content in the form of sulphate and other ions resulting from chemical reactions. Sources with these types of elements are of great interest for the tourism and geothermal industry because of their highlighted properties which include therapeutic treatments, relaxation baths, agricultural applications, and preservation of flora and fauna among others. For these reasons, research oriented to carry out the characterization of these factors is of great importance to determine the availability of places with such characteristics. This work shows the characterization of 17 hot spring sources located in the Coconuco and San Juan sectors (Cauca, Colombia, South America). Water samples were taken in May 2017, and laboratory analyses were carried out by the Water Laboratory at Universidad Nacional de Colombia-Manizales, based on the Standard Methods (APHA-AWWA-WEF). Rock samples were taken in November 2017, and laboratory analyses were carried out by the GMAS+ Laboratory (Bogotá, Colombia). The Piper, Stiff, and ternary (Giggenbach) diagrams were used for the classification of major ions. Mineralogy composition was determined through XRD and XRF. Results indicate that most sources are of the sulphated type according to the anions and of the calcium type according to the cations. In concordance with Giggenbach diagrams, most of the sources are immature waters and, despite their interaction with rocks, they have not achieved the equilibrium. Likewise, these sources are of heated vapor type and, considering that they consist of sulphated acid sources, it is not possible to evaluate the reservoir temperatures from Na/K cations. The low Ca2+/Mg2+ ratio in the sources indicates the lack of direct migration of fluids and the high content of Ca2+ and Mg2+ regarding Na+ and K+, which suggests that fluids possibly are mixed with cold waters rich in Ca2+ and Mg2+. From the mineralogic characterization, it was observed that volcanic rocks are composed of cristobalite and albite with TiO2, Fe2O3, and CaO traces and mineral sulfur. Metals like Cr, considered in this case as contaminants, are found in low concentrations in rocks and are not detected in these waters.

Highlights

  • Sulfur is one of the main components in the volcanic zones being present in both liquid and vapor phases and either in the form of sulfur and/or sulphate [1]

  • The results showed temperature variations between 14 and 94°C and pH between 0.8 and 9.7, and it was observed that photosynthesis was favored at lower temperatures and pH

  • Changes in the pH were generated with the variations of temperature when there was an increase in temperature generating vibrations in the molecules, producing a decrease in the formation of hydrogen bonds and a decrease in the pH

Read more

Summary

Introduction

Sulfur is one of the main components in the volcanic zones being present in both liquid and vapor phases and either in the form of sulfur and/or sulphate [1]. Hot springs are characterized in their composition by the content of ions and trace elements which are dissolved due to chemical reactions, cation exchange, hydrolysis, natural processes, and redox processes among others, carried out during the water-rock interaction [2,3,4], which establish a thermal character [5, 6] These natural resources are of great relevance for the geothermal and tourism industry [7, 8], mainly in the development of spa and health tourism, keeping in mind that these natural resources have combined customs and traditions of many. Several studies have been reported concerning thermal waters including King et al [10] that applied ultraclean sampling methods to quantify traces of Hg (total Hg, MeH)

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.