Abstract

lbuprofen:Eudragit coprecipitates were prepared in 10:3 ratios and their physical properties and related dissolution characteristics were determined. The Eudragit polymers used for the studies were three anionics (Eudragit L100, Eudragit L100-55, and Eudragit S-100), one anionic.cationic mixture used in a 1:1 ratio (Eudragit S100 + E100), and four zwitterionics (Eudragits RL 100, RS 100, RSPM, and RLPM). Physical characterizations were made using qualitative and quantitative X-ray diffractometry, IR spectrophotometry, and differential scanning calorimetry (DSC). Except for Eudragit S100 + E100 coprecipitates, no sizeable interaction at a molecular level was detected between the drug and the polymer. The crystalline structure of the drug was slightly modified in the coprecipitates. Regardless of the lack of interaction, dissolution of ibuprofen was retarded from all the coprecipitates studied (except Eudragit L100), especially in the pH 6.8 to 7.5 media in which the drug is freely soluble. The dissolution rate constants of the coprecipitates, calculated using Higuchi equation, demonstrated that dissolution decreased in the order of anionics > zwitterionic > anionic + cationic mixtures. The data obtained suggest that the release mechanisms involved are the swelling and slower dissolution of the polymer matrix relative to precipitated ibuprofen. The coprecipitates possess improved flow properties compared with ibuprofen with the exception of Eudragit RLPM and Eudragit RSPM. Eudragit coprecipitates can be useful tools in preparing ibuprofen sustained-release tablets. The coprecipitation technique used is simple and minimizes the use of organic solvents.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.