Abstract
Physical characteristics of polyimide films, including optical, micro/nano mechanical, and thermophysical characteristics were investigated using a photometric, a nanoindentation, and a thermomechanical analyzer for applications in flexible sensors. Experimental results show that UV light cannot transmit into the polyimide films. The transmittances, with a maximum of about 86%, at VIS and near IR lights decrease with increasing PI film thicknesses. The mechanical characteristics were determined using tensile, bending moment, and nanoindentation testing. The stress–strain curve approximated bilinear characteristics, the load–unload bending moment exhibited hysteresis, and nanoindentation generated elastic energy dissipation in the loading–unloading region. Nanoindentation showed an almost uniform hardness and a reduced Young’s modulus of about 0.181±0.03 and 3.21±0.06 GPa, respectively, when the penetrating depth was more than about 2 μm. Thermophysical characteristics were greatly influenced on 8.3 and 25 μm specimens due to the higher relaxation of thin PI films. The thermal expansion remained steady when the thickness was over 50 μm. The results show that PI films have potential in flexible sensing and higher temperature fabrication.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.