Abstract

A comprehensive investigation of the physical characteristics of any material provides beneficial information regarding its application viewpoint in different industries. Herein, we report the tunable mechanical and optoelectronic properties of cubic CdZrO3 under variable pressure up to 80 GPa using density functional theory (DFT). The pressure-induced band gap engineering reveals a fantastic fact of transformation of the indirect to direct band gap with increasing pressure. The dielectric response disclosed that optical parameters dragged towards higher energy with an increase of pressure, which unveiled the potential of CdZrO3 for optoelectronic applications. Effective change in optoelectronic is attributed to indirect to direct band gap transition. This study provides a gateway to how the optoelectronic properties of cubic CdZrO3 could be tuned by employing external pressure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.