Abstract

We report on a transient response model of thin cylindrical piezoelectric transducers used in the petroleum logging tools, parallel to a recently established transient response model of thin spherical-shell transducers. Established on a series of parallel-connected equivalent-circuits, this model provides insightful information on the physical characteristics of the thin cylindrical piezoelectric transducers, i.e., the transient response, center-frequency, and directivity of the transducer. We have developed a measurement system corresponding to the new model to provide a state-of-the-art comparison between theory and experiment. We found that the measured results were in good agreement with those of theoretical calculations.

Highlights

  • Acoustical measurement is ubiquitous in industrial applications, scientific research, and daily life, e.g., mobile and internet communication [1,2], exploration of underground mineral resources [3], measurement of the in situ stresses of underground rock formation [4], and the inspection of mechanical properties of concrete [5,6], as well as intravascular ultrasound [7], medical imaging [8], biometric recognition [9], implantable microdevices [10], rangefinders [11], nondestructive detection [12,13,14], experimental verification of acoustic lateral displacement [15], inspection of a specific polarization state of a wave propagating in layered isotropic/anisotropic media [16,17], wave energy devices [18], and more

  • Thin cylindrical transducers are widely used in industry, e.g., in petroleum logging tools

  • Fenlon [24] reported calculations for the acoustic radiation field at the surface of a finite cylinder using the method of weighted residuals

Read more

Summary

Introduction

Acoustical measurement is ubiquitous in industrial applications, scientific research, and daily life, e.g., mobile and internet communication [1,2], exploration of underground mineral resources (oil, gas, coal, metal ores, etc.) [3], measurement of the in situ stresses of underground rock formation [4], and the inspection of mechanical properties of concrete [5,6], as well as intravascular ultrasound [7], medical imaging [8], biometric recognition [9], implantable microdevices [10], rangefinders [11], nondestructive detection [12,13,14], experimental verification of acoustic lateral displacement [15], inspection of a specific polarization state of a wave propagating in layered isotropic/anisotropic media [16,17], wave energy devices [18], and more. By adopting the method describing a thin spherical-shell transducer’s transient response [34] for the excited driving-voltage signal wavelet with multi-frequency components, we established the parallel-connected equivalent circuits for the thin cylindrical-shell transducers polarized in the radial direction. The Fourier transform of the electric/acoustic signal of an excited transducer can be expressed as a linear superposition of sine-wave components with different frequencies, amplitudes, and phases. The normalized vibration speed of the surface of the thin cylindrical transducer, i.e., the radiated acoustic signal, is defined as: vr1(t) = vr1j(t) ωj /max[ vr1j(t) ωj ]. The gated sinusoidal driving electric signal was expanded on the basis of a series of sine-waves with different frequencies, amplitudes, and phases Each of these sinusoidal components, as an individual excitation source, was applied to the parallel circuits of Figure 3. TThheesyssytsetmemsofstowftawreawreaswdaesvedloepvedloopnedtheoLnabthVeIELWabpVlaIEtfWormpilnatGforramphicnPGrorgarpahmicmiPnrgogLraanmgumaigneg (GLa-cnogTduhea)eg. eCsyo(smGte-mmcoudnseioc)f.attwCioaonrmsebmweutawnsiecedanetivtohenelsocpobemedtpwouenteenrthatenhdeLtahcbeoVmhIaEprWudtwerparlaeantwfdoerrmtehreeinahliaGzrerddawptahhriecouPwgrheorgUerSarBmeasmelirziinaegld pLtoharrntosgu.ugaPhgoeUwS(eGBre-dsceorbdiyael)a.pgCoroatmsp.hmPicouwniniectraeertdifoanbcesy caboengtrwtraoeplehnpicatnihneetle, rcufoasmecerpscuhotaenrvtreoaltnhpdeanothepelt,iouhnsaserrdoswfhsaaervleecwthineergeodpriteffiaoelnriezsneodtf dtshreirlvoeicuntgginhsgiUgdSniBaffless,reecrnioatnl fidpgroiurvtrisinn. ggPotshwigeenrpaeoldsw, becyronaamfiggprualirpfiihneigrc, atihndetjeurpsftaoicnwegecrtohnaemtpropollsipiftiaieonrn,ela, dnudjsuesrrtositnahgtaiovthneeatlhpaeonosgiplteitoioonnf stahnoedf tsreaolnteasctdtiiounncgaerldsai,nfafgenlrdeenoatftttadhirneiivtnrignangdsadstiuagcnaecarqlssu,,aiscniodtinoafnitgtoauifrntiinhngegmtdheaeataspuaorcewqdueairsciaotimuosnptilociffsietihgr,enaamld.ejuassutirnegd tahceoupsotiscitsiiognnaaln. d rotatTiTohhneealddaeenvvgeelleolopopefedtdhsesootfrtfawtwnasardreueccceoornsns,siasisntstdsoaoftftfaofiounurinrfgufudnnactctiatoioancnaqalulmimsoitodiodunuleloesf,s,tahasessmhsheoaowswunnreindinFaciFgoiuguursetriec14s1i.4g.nOOanln. aa ggrraapphThihciceccodommevppeuultoeteprreidnintetserorffaftacwceeaprpeaannceoel,nl,tshtihsetesVVIoSIfSAAfo(Vu(VriritrfutuuanallcItIninosntrauulmmmeenontdtSuSoolfetfwst,waraaesrAesrAhcohrcwithencitteuicnrteu)Frliiegb)urlariberyra1fr4ry.omfOrontmhae tghLreaabpLVhaIbiEcVWcIoEmWplpaputfltoaetrrfmoinrmtwerawfsaacesemeppmalnopeylole,ydtehdteotVoaIcSahcAiheiv(eVeviertthutehalecIocnonsnttrrtuormol leonoftftSthhoeeftfwfooauurrer Amrocdhiutelectsutrthe)rooliuubggrahhrsyseefrrriioaalmlppotohrrtet cLcooambmVmmIuEunWniiccapatltiaiootnfnoss.r.mIInnwtthhaees ffeuumnncpcttlioiooynne//sdseeltleoecctatiicoohnniebbvooexxetehsseiinnctohtnheterhohulumomfaantnh––eccofomomuprpuumtteeorrdiniuntleteersrffatahccereomumgoohddusuleelresis,a,uluspseoerrrsts icnionpmpuumtttuhthneeipcpaaatriraoamnmsee.tetIernrsstahanenddfcuconomcmtmimoanan/nsdedslsefcofotrirosnsppebecociaixalelosopipenerartahtiteoionhnsusamannaddna–acccoooumustspitcuictmemreeainasusteurrerfmeamceenenmtst.so.dules, users input the parameters and commands for special operations and acoustic measurements

Electric Signal Module
Power Amplification Module
System Workflow
Final Remarks
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call