Abstract

The coconut sugar powder produced by vacuum drying and conventional method has high hygroscopicity due to its high sugar content (mostly sucrose). Therefore, it is easier for caking to occur during storage. An anticaking agent such as tricalcium phosphate was therefore added to the powder to maintain its stability. The purpose of this research was to determine the physical characteristics of amorphous and crystalline coconut sugar after the addition of tricalcium phosphate (TCP) in different concentrations. The two types of coconut sugar were prepared by the conventional method, which gave it a predominantly crystalline structure, and the vacuum drying method, which gave it a mainly amorphous structure. The TCP at concentrations 0, 0.5%, and 1% was added to both types of the coconut sugar. The addition of the anticaking agent affected the water sorption of coconut sugar by decreasing the monolayer water content for both types of coconut sugar. TCP seemed to give more significant effect on decreasing the hygroscopicity of crystalline coconut sugar than the amorphous one, while similar trends were obtained in increasing flow ability of both types of coconut sugar. The capacity of TCP to cover the surface of the host coconut powder was proposed as the mechanism of TCP in decreasing hygroscopicity and increasing flow ability of the host powder.

Highlights

  • Coconut sugar is commonly produced from the evaporation of coconut sap

  • The dried coconut sugar produced had a mainly amorphous structure in contrast with the crystalline structure of coconut sugar obtained with the conventional method [2]

  • The coconut sugar powder obtained by the conventional method showed lesser water sorption at each aw compared to the coconut sugar powder from vacuum treatments

Read more

Summary

Introduction

Coconut sugar is commonly produced from the evaporation of coconut sap (called as neera). Oyster white-coloured sap liquid tapped from the immature inflorescence of coconut. Neera is obtained from the immature inflorescence of a coconut which is about to burst, and the tapping could be done for 12 to 15 times [1]. Coconut sugar powder is produced conventionally by heating the coconut sap until reaching a saturated solution, and crystalline coconut sugar powder is formed. Coconut sugar was produced by drying the coconut sap using spray drying and vacuum drying [2]. The dried coconut sugar produced had a mainly amorphous structure in contrast with the crystalline structure of coconut sugar obtained with the conventional method [2]

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call