Abstract

The physical characteristics of the plastid DNA in Neospora caninum were investigated using pulsed-field gel electrophoresis and TEM. In a comparison of contour-clamped homogenous electric field and field inversion gel electrophoresis, the latter proved the more successful technique for studying the plastid molecules. In most cases, restriction or modifying enzymes were required to enable the plastid DNA molecules to enter the gel from the well area. The unit length of the plastid of N. caninum is approximately 35 kb; however, there is evidence for the formation of oligomeric molecules, which may migrate as linear molecules in approximate multiples of the unit length. Four different plastid genes encoding the ssrRNA, lsrRNA, rpoC and tufA genes were identified by hybridisation studies of contour-clamped homogenous electric field and field inversion gel electrophoresis gels. Transmission EM was performed on isolated plastid DNA, and circular structures similar in size and appearance to those described in other apicomplexans were observed, with an approximate length of 19 μm. The data presented here conclusively show that the Nc-Liverpool canine strain of N. caninum possesses a plastid DNA, with physical characteristics similar to the plastids found in other apicomplexans.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.