Abstract
A theoretical treatment of self-assembly macrocyclizations occurring under thermodynamic control is presented. The fundamental quantities on which the treatment is based are the effective molarity of the self-assembling cyclic n-mer (EMn) and the equilibrium constant for the intermolecular model reaction between monofunctional reactants (Kinter). Knowledge of these quantities allows the evaluation of the distribution curve of the self-assembling macrocycle. In order for effective self-assembly to take place two conditions are required: (i) the self-assembling macrocycle must have an EM much larger than that of the other cyclic oligomers; (ii) the product EMnKinter must be not lower than 185r, where r is the number of bonds that hold together the monomer units in the cyclic oligomer, the higher the better. It is shown that in the limit of an infinite value of Kinter there is a critical monomer concentration (cmc = nEMn) below which the system is virtually composed of the self-assembling macrocycle only an...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.