Abstract

Nano-silver doped silica films were deposited on glass slides using a sol-gel process and heat-treated at different temperatures. The films were characterized by ultraviolet-visible spectroscopy, x-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), Rutherford backscattering spectrometry (RBS), and transmission electron microscopy for their optical, chemical, and structural properties. The absorption peak of silver colloids (wavelength from 400 to 460 nm) was present and a blueshift and intensity reduction of the absorption peak was observed during heat-treatment. Particle size reduction and surface morphology changes in the films were observed by AFM as a function of varying heat treatment temperatures. Silver nanoparticles were formed through spontaneous reduction of silver ions. The oxidation of silver occurs during heat-treatment, causing a reduction of absorption intensity. An interdiffusion between the Ag in the film and Na in the substrate glass was observed by XPS and RBS. Sodium in the coating likely increased the stability of silver oxide at high temperature treated samples.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.