Abstract

Abstract The southwest vortex (SWV) is a critical weather system in China, but our knowledge of this system remains incomplete. Here, we investigate the cloud properties in the SWV. First, we search for the SWVs with time steps and center locations that are consistent between the SWV yearbook and ERA-Interim reanalysis data. Second, we supplement these SWVs’ life spans and movement paths. Third, we relocate the Fengyun (FY) satellite FY-4A cloud retrievals in the 10° × 10° region centered on each SWV and analyze the cloud occurrence frequency (COF), cloud-top height (CTH), and cloud optical thickness (COT). A distribution mode of cloud types is summarized from the COFs, with water clouds, supercooled clouds, mixed clouds, ice clouds, cirrus clouds, and overlap clouds occurring sequentially from west to east. The CTH probability density (PD) distribution features a significant north–south difference. In addition, the COT PD distributions exhibit a common trend: with increasing COT, the PD increases rapidly and then slowly before peaking, whereupon the PD decreases abruptly. From spring to summer, the region with the highest convective COF shifts from the northeast to the northwest, and an east–west gradient of the convective COF appears in autumn and winter. Furthermore, we investigate the cloud properties during SWV-related heavy rainfall. Heavy rain occurs mainly in the west of the SWV, and convective clouds are mainly in the northwest, partly in the southwest and near the SWV center. The average CTH in heavy rainfall is generally higher than 6 km, and the average COT is greater than 20. Significance Statement The southwest vortex (SWV) is an important weather system in China. However, we do not yet comprehensively know this weather system. The cloud properties can indicate the structures of weather systems and are key parameters in numerical weather prediction (NWP) models. Thus, investigating cloud properties is necessary and meaningful to understand the SWV and accurately predict SWV-related precipitation in NWP models. In this paper, a typical distribution mode of six cloud types in the SWV is summarized from the cloud occurrence frequency, and the distribution features of convective clouds, cloud-top height, and cloud optical thickness in the SWV are analyzed. Furthermore, the cloud properties in SWV-related heavy rain are also studied.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call