Abstract
Physical and numerical studies of transient flow in a model of discretely fractured rock are presented. The physical model is a thermal analogue to fractured media flow consisting of idealized disc‐shaped fractures. The numerical model is used to predict the behavior of the physical model. The use of different insulating materials to encase the physical model allows the effects of differing leakage magnitudes to be examined. A procedure for determining appropriate leakage parameters is documented. These parameters are used in forward analysis to predict the thermal response of the physical model. Knowledge of the leakage parameters and of the temporal variation of boundary conditions are shown to be essential to an accurate prediction. Favorable agreement is illustrated between numerical and physical results. The physical model provides a data source for the benchmarking of alternative numerical algorithms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.