Abstract

Recycled polypropylene (RPP) and lignin represent by-products produced in enormous amounts worldwide that remain underutilized. This study used rice straw lignin as a filler at various concentrations (0% to 70% w/w) in RPP and virgin polypropylene (PP) composites by melt blending. Structural and morphological alterations of lignin were analyzed by Fourier transform infrared (FTIR) spectroscopy and scanning electron microscopy (SEM), respectively. Mechanical properties were evaluated using a universal testing machine (UTM). Results revealed that the tensile strength of the composites decreased as the lignin content increased, presumably due to the low of compatibility degree of lignin and MAPP, as well as the crack formation due to the agglomeration of lignin. However, composites with lignin as a filler showed higher moduli and water absorption capacities, as well as thickness swelling; using lignin as a filler caused a drastic reduction of the elongation at break values. The results indicated that the physical and mechanical properties of RPP and its virgin PP composites had no substantial differences. This indicated that virgin PP could be substituted by recycled polypropylene (RPP) for composite applications with the addition of MAPP.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call