Abstract
Ecological concrete could reduce the environment impacts of the tremendous construction of infrastructures due to its favorability to plant growth. Nonetheless, the alkalinity of the ecological concrete is usually too high when using ordinary Portland cement (OPC). To solve this problem, the magnesium ammonium phosphate cement (MPC) was used to prepare a novel porous ecological concrete instead of OPC. The pH value and compressive strength of MPC were analyzed and the pore structure was evaluated. The chemical composition and morphology were investigated by an X-ray diffraction test and scanning electron microscope observation. In addition, the void ratio, compressive strength and planting-growing characteristic of MPC-based porous ecological concrete were also studied. The pH value of the MPC suspension ranged from 6.8 to 8.5, which was much lower than that of OPC. The pH value of MPC gradually increased with the increment of phosphorus/magnesium molar ratio (P/M) and the compressive strength reached a maximum value of 49.2 MPa when the P/M value was 1/4. Fly ash (FA) and ground blast furnace slag (GBFS) could improve the pore structure and compressive strength; however, the pH value was slightly increased. As the paste-to-aggregate ratio increased, the void ratio of concrete gradually decreased, while the compressive strength gradually increased. The meadow grass was planted in the MPC-based ecological concrete, and the seeds germinated in one week and showed a better growth status than those planted in the OPC-based ecological concrete.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.