Abstract

In this research, a novel carboxymethyl cellulose (CMC)-based nanocomposite films containing sodium montmorillonite (MMT) (5%wt) and zinc oxide (ZnO) (1, 2, 3 and 4%wt) nanoparticles (NPs) were fabricated via casting method. The results revealed that addition of NPs decreased water vapor permeability of the films by about 53%, while moisture content, density and glass transition temperature increased. The nanomaterials enhanced resistance of the nanocomposites against tensile stress at the expense of elongation at break. Nano-ZnO was very effective than nanoclay in UV–light blocking (99% vs. 60%) associated with sacrificing the films transparency. Formation of hydrogen bonds between the hydroxyl groups of CMC and MMT was evidenced by FTIR spectroscopy. According to the XRD analysis, clay nanolayers formed an exfoliated structure in the nanocomposites, whereas ZnO NPs raised crystallinity. SEM micrographs showed well-dispersed MMT and ZnO NPs through the films surface. Antibacterial test showed that vulnerability of Gram-positive S. aureus toward ZnO NPs was more than that of Gram-negative E. Coli. In conclusion, simultaneous incorporation of MMT and ZnO NPs improved the functional characteristics of CMC film and extended the potential for food packaging applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.