Abstract

This study presents the effort in applying neural network-based system identification techniques by using Back- propagation algorithm to predict somephysical mechanical properties of functionally graded and compositesamples from Ti/HAP, these samples were fabricated by powder metallurgy method at various volume fraction of hydroxyapatite and at n equal (0.8, 1, and 1.2). Because of important of advanced materials such as FGMs as alternative industrial material, it is necessary to measure the physical properties of these materials such as porosity, density, hardness, compression …etc. Therefore the ANN will be used to estimate these properties and give a good performance to the network.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.