Abstract
Random rough surfaces with slowly decaying power spectral density can have infinite slope variance. Such surfaces do not satisfy the classical curvature criterion for validity of the physical optics (PO) approximation, and the infinite frequency geometrical optics limit or specular point scattering model breaks down. We show for two-dimensional surfaces with infinite slope variance that the Gaussian form of the classical geometrical limit generalizes to a stable distribution function. We also show that the PO integral is insensitive to surface components with spatial frequency above a cutoff wavenumber, which explains past observations that PO can be accurate for surfaces with power law spectra. This result leads to a general validity condition for the PO approximation in the backscattering direction for power-law surfaces, which in the case of a k/sup -4/ spectrum requires that the significant slope of the surface be less than 0.03.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.