Abstract

In the chestnut-blight fungus, Cryphonectria parasitica, a cytoplasmically transmissible (infectious) form of hypovirulence is associated with mitochondrial DNA (mtDNA) mutations that cause respiratory deficiencies. To facilitate the characterization of such mutations, a restriction map including the probable location of 13 genes was constructed for a relatively well-characterized virulent strain of the fungus, Ep155. The physical map is based on the order of all fragments generated by cleavage of the mtDNA by the PstI restriction endonuclease and includes some of the cleavage sites for HindIII, EcoRI, and XbaI. It was constructed from hybridization patterns of cloned mtDNA fragments with Southern blots of mtDNA digested with the four restriction enzymes. On this map, the probable locations of genes commonly found in the mitochondrial genomes of ascomycetes were determined by low-stringency hybridization of cloned Neurospora crassa mitochondrial gene probes to Southern blots of C. parasitica mtDNA. The data indicate that the mtDNA of strain Ep155 is a circular molecule of approximately 157 kbp and ranks among the largest mitochondrial chromosomes observed so far in fungi. The mtDNAs of 11 different C. parasitica isolates range in size from 135 to 157 kbp and in relatedness from 68 to 100 percent, as estimated from restriction-fragment polymorphisms. In addition to the typical mtDNA, the mitochondria of some isolates of the fungus contain double-stranded DNA plasmids consisting of nucleotide sequences not represented in the mtDNA of Ep155.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call