Abstract

chi-Alcohol dehydrogenase (chi-ADH), a class III isozyme characterized by its anodic electrophoretic mobility and lack of inhibition by 4-methylpyrazole, has been isolated from human liver and purified to homogeneity in a reducing medium. chi-ADH resembles other human liver ADH isozymes of classes I and II with respect to its molecular weight, dimeric structure, stoichiometry of zinc and NADH binding, and pH optima for the oxidation of alcohols. This homodimer exhibits subtle differences in its absorption spectrum and amino acid composition relative to those of other human isozymes but differs markedly from their specificity toward alcohols and aldehydes. chi-ADH oxidizes ethanol very poorly. The reaction is bimolecular, and an apparent Km cannot be discerned up to 2.3 M ethanol. The enzyme is inactive toward methanol, ethylene glycol, digitoxigenin, digoxigenin, and gitoxigenin , but alcohols with carbon chain lengths greater than four are oxidized rapidly with Km values decreasing with increasing carbon chain length. Taken jointly, the composition, structure, and enzymatic properties of the ADH isozymes purified and studied so far strongly imply that their metabolic roles, yet to be discovered, will give a new perspective to ethanol metabolism and pathology.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.